Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 407: 110414, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-37778080

RESUMO

Bacterial community collapse due to phage infection is a major risk in cheese making processes. As virulent phages are ubiquitous and diverse in milk fermentation factories, the use of phage-resistant lactic acid bacteria (LAB) is essential to obtain high-quality fermented dairy products. The LAB species Streptococcus thermophilus contains two type II-A CRISPR-Cas systems (CRISPR1 and CRISPR3) that can effectively protect against phage infection. However, virulent streptococcal phages carrying anti-CRISPR proteins (ACR) that block the activity of CRISPR-Cas systems have emerged in yogurt and cheese environments. For example, phages carrying AcrIIA5 can impede both CRISPR1 and CRISPR3 systems, while AcrIIA6 stops only CRISPR1. Here, we explore the activity and diversity of a third streptococcal phage anti-CRISPR protein, namely AcrIIA3. We were able to demonstrate that AcrIIA3 is efficiently active against the CRISPR3-Cas system of S. thermophilus. We used AlphaFold2 to infer the structure of AcrIIA3 and we predicted that this new family of functional ACR in virulent streptococcal phages has a new α-helical fold, with no previously identified structural homologs. Because ACR proteins are being explored as modulators in genome editing applications, we also tested AcrIIA3 against SpCas9. We found that AcrIIA3 could block SpCas9 in bacteria but not in human cells. Understanding the diversity and functioning of anti-defence mechanisms will be of importance in the design of long-term stable starter cultures.


Assuntos
Bacteriófagos , Fagos de Streptococcus , Humanos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Fagos de Streptococcus/genética , Sistemas CRISPR-Cas/genética , Edição de Genes
2.
Appl Environ Microbiol ; 89(5): e0042123, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37074184

RESUMO

The presence of virulent phages is closely monitored during cheese manufacturing, as these bacterial viruses can significantly slow down the milk fermentation process and lead to low-quality cheeses. From 2001 to 2020, whey samples from cheddar cheese production in a Canadian factory were monitored for the presence of virulent phages capable of infecting proprietary strains of Lactococcus cremoris and Lactococcus lactis used in starter cultures. Phages were successfully isolated from 932 whey samples using standard plaque assays and several industrial Lactococcus strains as hosts. A multiplex PCR assay assigned 97% of these phage isolates to the Skunavirus genus, 2% to the P335 group, and 1% to the Ceduovirus genus. DNA restriction profiles and a multilocus sequence typing (MLST) scheme distinguished at least 241 unique lactococcal phages from these isolates. While most phages were isolated only once, 93 of them (out of 241, 39%) were isolated multiple times. Phage GL7 was isolated 132 times from 2006 to 2020, demonstrating that phages can persist in a cheese factory for long periods of time. Phylogenetic analysis of MLST sequences showed that phages could be clustered based on their bacterial hosts rather than their year of isolation. Host range analysis showed that Skunavirus phages exhibited a very narrow host range, whereas some Ceduovirus and P335 phages had a broader host range. Overall, the host range information was useful in improving the starter culture rotation by identifying phage-unrelated strains and helped mitigating the risk of fermentation failure due to virulent phages. IMPORTANCE Although lactococcal phages have been observed in cheese production settings for almost a century, few longitudinal studies have been performed. This 20-year study describes the close monitoring of dairy lactococcal phages in a cheddar cheese factory. Routine monitoring was conducted by factory staff, and when whey samples were found to inhibit industrial starter cultures under laboratory conditions, they were sent to an academic research laboratory for phage isolation and characterization. This led to a collection of at least 241 unique lactococcal phages, which were characterized through PCR typing and MLST profiling. Phages of the Skunavirus genus were by far the most dominant. Most phages lysed a small subset of the Lactococcus strains. These findings guided the industrial partner in adapting the starter culture schedule by using phage-unrelated strains in starter cultures and removing some strains from the starter rotation. This phage control strategy could be adapted for other large-scale bacterial fermentation processes.


Assuntos
Bacteriófagos , Queijo , Lactococcus lactis , Siphoviridae , Humanos , Queijo/microbiologia , Tipagem de Sequências Multilocus , Filogenia , Estudos Longitudinais , Canadá , Lactococcus lactis/genética , Siphoviridae/genética , Reação em Cadeia da Polimerase Multiplex
3.
ISME J ; 17(3): 432-442, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36631688

RESUMO

Many bacteria and archaea harbor the adaptive CRISPR-Cas system, which stores small nucleotide fragments from previous invasions of nucleic acids via viruses or plasmids. This molecular archive blocks further invaders carrying identical or similar nucleotide sequences. However, few of these systems have been confirmed experimentally to be active in gut bacteria. Here, we demonstrate experimentally that the type I-C CRISPR-Cas system of the prevalent gut bacterium Eggerthella lenta can specifically target and cleave foreign DNA in vitro by using a plasmid transformation assay. We also show that the CRISPR-Cas system acquires new immunities (spacers) from the genome of a virulent E. lenta phage using traditional phage assays in vitro but also in vivo using gnotobiotic (GB) mice. Both high phage titer and an increased number of spacer acquisition events were observed when E. lenta was exposed to a low multiplicity of infection in vitro, and three phage genes were found to contain protospacer hotspots. Fewer new spacer acquisitions were detected in vivo than in vitro. Longitudinal analysis of phage-bacteria interactions showed sustained coexistence in the gut of GB mice, with phage abundance being approximately one log higher than the bacteria. Our findings show that while the type I-C CRISPR-Cas system is active in vitro and in vivo, a highly virulent phage in vitro was still able to co-exist with its bacterial host in vivo. Taken altogether, our results suggest that the CRISPR-Cas defense system of E. lenta provides only partial immunity in the gut.


Assuntos
Bacteriófagos , Animais , Camundongos , Bacteriófagos/genética , Sistemas CRISPR-Cas , Bactérias/genética , Sequência de Bases , Plasmídeos
4.
mBio ; 13(6): e0147522, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36314808

RESUMO

Bacteriophages put intense selective pressure on microbes, which must evolve diverse resistance mechanisms to survive continuous phage attacks. We used a library of spontaneous Bacteriophage Insensitive Mutants (BIMs) to learn how the plant pathogen Ralstonia solanacearum resists the virulent lytic podophage phiAP1. Phenotypic and genetic characterization of many BIMs suggested that the R. solanacearum Type II Secretion System (T2SS) plays a key role in phiAP1 infection. Using precision engineered mutations that permit T2SS assembly but either inactivate the T2SS GspE ATPase or sterically block the secretion portal, we demonstrated that phiAP1 needs a functional T2SS to infect R. solanacearum. This distinction between the static presence of T2SS components, which is necessary but not sufficient for phage sensitivity, and the energized and functional T2SS, which is sufficient, implies that binding interactions alone cannot explain the role of the T2SS in phiAP1 infection. Rather, our results imply that some aspect of the resetting of the T2SS, such as disassembly of the pseudopilus, is required. Because R. solanacearum secretes multiple virulence factors via the T2SS, acquiring resistance to phiAP1 also dramatically reduced R. solanacearum virulence on tomato plants. This acute fitness trade-off suggests this group of phages may be a sustainable control strategy for an important crop disease. IMPORTANCE Ralstonia solanacearum is a destructive plant pathogen that causes lethal bacterial wilt disease in hundreds of diverse plant hosts, including many economically important crops. Phages that kill R. solanacearum could offer effective and environmentally friendly wilt disease control, but only if the bacterium cannot easily evolve resistance. Encouragingly, most R. solanacearum mutants resistant to the virulent lytic phage phiAP1 no longer secreted multiple virulence factors and had much reduced fitness and virulence on tomato plants. Further analysis revealed that phage phiAP1 needs a functional type II secretion system to infect R. solanacearum, suggesting this podophage uses a novel infection mechanism.


Assuntos
Bacteriófagos , Ralstonia solanacearum , Solanum lycopersicum , Sistemas de Secreção Tipo II , Fatores de Virulência/genética , Ralstonia solanacearum/genética , Bacteriófagos/genética , Sistemas de Secreção Tipo II/metabolismo , Doenças das Plantas/microbiologia
5.
Nat Ecol Evol ; 6(10): 1480-1488, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970864

RESUMO

The diversity of resistance challenges the ability of pathogens to spread and to exploit host populations. Yet, how this host diversity evolves over time remains unclear because it depends on the interplay between intraspecific competition among host genotypes and coevolution with pathogens. Here we study experimentally the effect of coevolving phage populations on the diversification of bacterial CRISPR immunity across space and time. We demonstrate that the negative-frequency-dependent selection generated by coevolution is a powerful force that maintains host resistance diversity and selects for new resistance mutations in the host. We also find that host evolution is driven by asymmetries in competitive abilities among different host genotypes. Even if the fittest host genotypes are targeted preferentially by the evolving phages, they often escape extinctions through the acquisition of new CRISPR immunity. Together, these fluctuating selective pressures maintain diversity, but not by preserving the pre-existing host composition. Instead, we repeatedly observe the introduction of new resistance genotypes stemming from the fittest hosts in each population. These results highlight the importance of competition on the transient dynamics of host-pathogen coevolution.


Assuntos
Bacteriófagos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Bactérias/genética , Bacteriófagos/genética
7.
Nat Commun ; 13(1): 2802, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589712

RESUMO

CRISPR-Cas systems in prokaryotic cells provide an adaptive immunity against invading nucleic acids. For example, phage infection leads to addition of new immunity (spacer acquisition) and DNA cleavage (interference) in the bacterial model species Streptococcus thermophilus, which primarily relies on Cas9-containing CRISPR-Cas systems. Phages can counteract this defense system through mutations in the targeted protospacers or by encoding anti-CRISPR proteins (ACRs) that block Cas9 interference activity. Here, we show that S. thermophilus can block ACR-containing phages when the CRISPR immunity specifically targets the acr gene. This in turn selects for phage mutants carrying a deletion within the acr gene. Remarkably, a truncated acrIIA allele, found in a wild-type virulent streptococcal phage, does not block the interference activity of Cas9 but still prevents the acquisition of new immunities, thereby providing an example of an ACR specifically inhibiting spacer acquisition.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Bacteriófagos/genética , Streptococcus thermophilus/genética
8.
Microorganisms ; 9(3)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804420

RESUMO

Streptococcus thermophilus relies heavily on two type II-A CRISPR-Cas systems, CRISPR1 and CRISPR3, to resist siphophage infections. One hallmark of these systems is the integration of a new spacer at the 5' end of the CRISPR arrays following phage infection. However, we have previously shown that ectopic acquisition of spacers can occur within the CRISPR1 array. Here, we present evidence of the acquisition of new spacers within the array of CRISPR3 of S. thermophilus. The analysis of randomly selected bacteriophage-insensitive mutants of the strain Uy01 obtained after phage infection, as well as the comparison with other S. thermophilus strains with similar CRISPR3 content, showed that a specific spacer within the array could be responsible for misguiding the adaptation complex. These results also indicate that while the vast majority of new spacers are added at the 5' end of the CRISPR array, ectopic spacer acquisition is a common feature of both CRISPR1 and CRISPR3 systems in S. thermophilus, and it can still provide phage resistance. Ectopic spacer acquisition also appears to have occurred naturally in some strains of Streptococcus pyogenes, suggesting that it is a general phenomenon, at least in type II-A systems.

9.
CRISPR J ; 4(2): 233-242, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33876956

RESUMO

Nearly all strains of Streptococcus agalactiae, the leading cause of invasive infections in neonates, encode a type II-A clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system. Interestingly, S. agalactiae strains belonging to the hypervirulent Sequence Type 17 (ST17) contain significantly fewer spacers in their CRISPR locus than other lineages, which could be the result of a less functional CRISPR-Cas system. Here, we revealed one large deletion in the ST17 cas promoter region and we evaluated its impact on the transcription of cas genes as well as the functionalities of the CRISPR-Cas system. We demonstrated that Cas9 interference is functional and that the CRISPR-Cas system of ST17 strains can still acquire new spacers, despite the absence of a regular cas promoter. We demonstrated that a promoter sequence upstream of srn036, a small RNA partially overlapping the antisense tracrRNA, is responsible for the ST17 CRISPR-Cas adaptation and interference activities.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Streptococcus agalactiae/enzimologia , Streptococcus agalactiae/genética , Sequência de Bases , Clonagem Molecular , Genoma Bacteriano , Humanos , Plasmídeos/genética , RNA
10.
Microbiol Resour Announc ; 10(15)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858920

RESUMO

We report the complete genome sequences of 10 virulent phages of the Skunavirus genus (Siphoviridae) that infect Lactococcus lactis strains used for cheddar cheese production in Canada. Their linear genomes range from 28,969 bp to 31,042 bp with GC contents of 34.1 to 35.1% and 55 to 60 predicted open reading frames (ORFs).

11.
Can J Microbiol ; 67(1): 1-12, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32559396

RESUMO

CRISPR research began over 30 years ago with the incidental discovery of an unusual nucleotide arrangement in the Escherichia coli genome. It took 20 years to find the main function of CRISPR-Cas systems as an adaptive defence mechanism against invading nucleic acids, and our knowledge of their biology has steadily increased ever since. In parallel, the number of applications derived from CRISPR-Cas systems has risen spectacularly. The CRISPR-based genome editing tool is arguably the most exciting application in both basic and applied research. Lately, CRISPR-Cas research has partially shifted to the least understood aspect of its biology: the ability of CRISPR-Cas systems to acquire new immunities during the so-called adaptation step. To date, the most efficient natural system to readily acquire new spacers is the type II-A system of the gram-positive dairy bacterium Streptococcus thermophilus. The discovery of additional systems able to acquire new spacers will hopefully draw more attention to this step of CRISPR-Cas biology. This review focuses on the breakthroughs that have helped to unravel the adaptation phase and on questions that remain to be answered.


Assuntos
Adaptação Fisiológica/genética , Sistemas CRISPR-Cas/genética , Streptococcus thermophilus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Bacteriano/genética , Bactérias Gram-Positivas/genética
12.
Viruses ; 12(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722163

RESUMO

The lactococcal virulent phage p2 is a model for studying the Skunavirus genus, the most prevalent group of phages causing milk fermentation failures in cheese factories worldwide. This siphophage infects Lactococcus lactis MG1363, a model strain used to study Gram-positive lactic acid bacteria. The structural proteins of phage p2 have been thoroughly described, while most of its non-structural proteins remain uncharacterized. Here, we developed an integrative approach, making use of structural biology, genomics, physiology, and proteomics to provide insights into the function of ORF47, the most conserved non-structural protein of unknown function among the Skunavirus genus. This small phage protein, which is composed of three α-helices, was found to have a major impact on the bacterial proteome during phage infection and to significantly reduce the emergence of bacteriophage-insensitive mutants.


Assuntos
Bacteriófagos/química , Interações entre Hospedeiro e Microrganismos , Lactococcus lactis/virologia , Proteoma/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Genômica , Lactococcus lactis/genética , Mutação , Fases de Leitura Aberta/genética , Proteômica , Proteínas não Estruturais Virais/metabolismo
13.
Environ Microbiol ; 22(8): 3413-3428, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510858

RESUMO

This report presents the characterization of the first virulent phages infecting Brevibacterium aurantiacum, a bacterial species used during the manufacture of surface-ripened cheeses. These phages were also responsible for flavour and colour defects in surface-ripened cheeses. Sixteen phages (out of 62 isolates) were selected for genome sequencing and comparative analyses. These cos-type phages with a long non-contractile tail currently belong to the Siphoviridae family (Caudovirales order). Their genome sizes vary from 35,637 to 36,825 bp and, similar to their host, have a high GC content (~61%). Genes encoding for an immunity repressor, an excisionase and a truncated integrase were found, suggesting that these virulent phages may be derived from a prophage. Their genomic organization is highly conserved, with most of the diversity coming from the presence of long (198 bp) DNA tandem repeats (TRs) within an open reading frame coding for a protein of unknown function. We categorized these phages into seven genomic groups according to their number of TR, which ranged from two to eight. Moreover, we showed that TRs are widespread in phage genomes, found in more than 85% of the genomes available in public databases.


Assuntos
Brevibacterium/virologia , Genoma Viral/genética , Siphoviridae/genética , Sequências de Repetição em Tandem/genética , Composição de Bases/genética , Sequência de Bases , DNA Nucleotidiltransferases/genética , DNA Viral/genética , Variação Genética , Genômica , Integrases/genética , Fases de Leitura Aberta/genética , Prófagos/genética , Análise de Sequência de DNA , Siphoviridae/classificação , Siphoviridae/isolamento & purificação , Proteínas Virais/genética
15.
Mol Cell ; 76(6): 922-937.e7, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31604602

RESUMO

In the arms race against bacteria, bacteriophages have evolved diverse anti-CRISPR proteins (Acrs) that block CRISPR-Cas immunity. Acrs play key roles in the molecular coevolution of bacteria with their predators, use a variety of mechanisms of action, and provide tools to regulate Cas-based genome manipulation. Here, we present structural and functional analyses of AcrIIA6, an Acr from virulent phages, exploring its unique anti-CRISPR action. Our cryo-EM structures and functional data of AcrIIA6 binding to Streptococcus thermophilus Cas9 (St1Cas9) show that AcrIIA6 acts as an allosteric inhibitor and induces St1Cas9 dimerization. AcrIIA6 reduces St1Cas9 binding affinity for DNA and prevents DNA binding within cells. The PAM and AcrIIA6 recognition sites are structurally close and allosterically linked. Mechanistically, AcrIIA6 affects the St1Cas9 conformational dynamics associated with PAM binding. Finally, we identify a natural St1Cas9 variant resistant to AcrIIA6 illustrating Acr-driven mutational escape and molecular diversification of Cas9 proteins.


Assuntos
Bacteriófagos/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/metabolismo , Streptococcus thermophilus/enzimologia , Proteínas Virais/metabolismo , Regulação Alostérica , Bacteriófagos/genética , Sítios de Ligação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/ultraestrutura , DNA/genética , DNA/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Células K562 , Cinética , Mutação , Ligação Proteica , Conformação Proteica , Streptococcus thermophilus/genética , Relação Estrutura-Atividade , Proteínas Virais/genética , Proteínas Virais/ultraestrutura
16.
Sci Rep ; 9(1): 13816, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554834

RESUMO

Streptococcus thermophilus is a lactic acid bacterium widely used by the dairy industry for the manufacture of yogurt and specialty cheeses. It is also a Gram-positive bacterial model to study phage-host interactions. CRISPR-Cas systems are one of the most prevalent phage resistance mechanisms in S. thermophilus. Little information is available about other host factors involved in phage replication in this food-grade streptococcal species. We used the model strain S. thermophilus SMQ-301 and its virulent phage DT1, harboring the anti-CRISPR protein AcrIIA6, to show that a host gene coding for a methionine aminopeptidase (metAP) is necessary for phage DT1 to complete its lytic cycle. A single mutation in metAP provides S. thermophilus SMQ-301 with strong resistance against phage DT1. The mutation impedes a late step of the lytic cycle since phage adsorption, DNA replication, and protein expression were not affected. When the mutated strain was complemented with the wild-type version of the gene, the phage sensitivity phenotype was restored. When this mutation was introduced into other S. thermophilus strains it provided resistance against cos-type (Sfi21dt1virus genus) phages but replication of pac-type (Sfi11virus genus) phages was not affected. The mutation in the gene coding for the MetAP induces amino acid change in a catalytic domain conserved across many bacterial species. Introducing the same mutation in Streptococcus mutans also provided a phage resistance phenotype, suggesting the wide-ranging importance of the host methionine aminopeptidase in phage replication.


Assuntos
Aminopeptidases/genética , Mutação , Fagos de Streptococcus/fisiologia , Streptococcus thermophilus/virologia , Aminopeptidases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Microbiologia de Alimentos , Fagos de Streptococcus/genética , Streptococcus thermophilus/enzimologia , Streptococcus thermophilus/genética , Replicação Viral , Sequenciamento Completo do Genoma
17.
Artigo em Inglês | MEDLINE | ID: mdl-30714038

RESUMO

The lytic Escherichia coli siphophage BRET was isolated from a chicken obtained at a local market in Abidjan, Côte d'Ivoire. Its linear genome sequence consists of 59,550 bp (43.4% GC content) and contains 88 predicted genes, including 4 involved in archaeosine biosynthesis. Phage BRET is related (95% nucleotide identity) to Enterobacteria phage JenK1.

18.
RNA Biol ; 16(4): 461-468, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30081743

RESUMO

CRISPR-Cas defends microbial cells against invading nucleic acids including viral genomes. Recent studies have shown that type III-A CRISPR-Cas systems target both RNA and DNA in a transcription-dependent manner. We previously found a type III-A system on a conjugative plasmid in Lactococcus lactis which provided resistance against virulent phages of the Siphoviridae family. Its naturally occurring spacers are oriented to generate crRNAs complementary to target phage mRNA, suggesting transcription-dependent targeting. Here, we show that only constructs whose spacers produce crRNAs complementary to the phage mRNA confer phage resistance in L. lactis. In vivo nucleic acid cleavage assays showed that cleavage of phage dsDNA genome was not detected within phage-infected L. lactis cells. On the other hand, Northern blots indicated that the lactococcal CRISPR-Cas cleaves phage mRNA in vivo. These results cannot exclude that single-stranded phage DNA is not being targeted, but phage DNA replication has been shown to be impaired.


Assuntos
Sistemas CRISPR-Cas/genética , Lactococcus lactis/genética , RNA Viral/genética , Sequência de Bases , DNA Intergênico/genética , DNA Viral/genética , Replicação Viral/genética
19.
Mol Plant Pathol ; 20(2): 223-239, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30251378

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of an array of short DNA repeat sequences separated by unique spacer sequences that are flanked by associated (Cas) genes. CRISPR-Cas systems are found in the genomes of several microbes and can act as an adaptive immune mechanism against invading foreign nucleic acids, such as phage genomes. Here, we studied the CRISPR-Cas systems in plant-pathogenic bacteria of the Ralstonia solanacearum species complex (RSSC). A CRISPR-Cas system was found in 31% of RSSC genomes present in public databases. Specifically, CRISPR-Cas types I-E and II-C were found, with I-E being the most common. The presence of the same CRISPR-Cas types in distinct Ralstonia phylotypes and species suggests the acquisition of the system by a common ancestor before Ralstonia species segregation. In addition, a Cas1 phylogeny (I-E type) showed a perfect geographical segregation of phylotypes, supporting an ancient acquisition. Ralstoniasolanacearum strains CFBP2957 and K60T were challenged with a virulent phage, and the CRISPR arrays of bacteriophage-insensitive mutants (BIMs) were analysed. No new spacer acquisition was detected in the analysed BIMs. The functionality of the CRISPR-Cas interference step was also tested in R. solanacearum CFBP2957 using a spacer-protospacer adjacent motif (PAM) delivery system, and no resistance was observed against phage phiAP1. Our results show that the CRISPR-Cas system in R. solanacearum CFBP2957 is not its primary antiviral strategy.


Assuntos
Sistemas CRISPR-Cas/genética , Ralstonia solanacearum/genética , Ralstonia solanacearum/virologia , Imunidade Adaptativa/fisiologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/patogenicidade
20.
Med Sci (Paris) ; 34(10): 813-819, 2018 Oct.
Artigo em Francês | MEDLINE | ID: mdl-30451675

RESUMO

CRISPR-Cas is an adaptive immune system used by many microbes to defend against nucleic acids invasion such as viral genomes. The microbial system uses its CRISPR locus to store genetic information that will generate short CRISPR RNAs. The latter with endonucleases (Cas) prevent future viral infections. Parts of this system were exploited to develop a powerful genome editing tool that was adapted for a variety of organisms. The ability of the CRISPR-Cas9 technology to effectively and precisely cut a targeted genomic DNA region has the potential to may be one day cure genetic diseases. The malleability of this editing tool also offers a wide range of possibilities from modulations of gene expression to epigenetic modifications. The natural CRISPR loci found in bacteria can be used to differentiate microbial strains or to study the interactions between bacteria and its habitat. Addressing CRISPR-Cas fundamentals in microbes and its popular use in eukaryotes, this review presents an update on a system that has revolutionized biological sciences.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Edição de Genes/métodos , Engenharia Genética/tendências , Genoma , Animais , Edição de Genes/tendências , Engenharia Genética/métodos , Terapia Genética/métodos , Terapia Genética/tendências , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...